Number Base Converter
Number Base Conversion Explained
Different number systems (bases) are fundamental to computer science and digital electronics. While humans typically use decimal (base 10), computers internally work with binary (base 2). Hexadecimal (base 16) and octal (base 8) provide convenient ways to represent binary data in a more compact, readable format.
Understanding Number Bases
- Binary (Base 2): Uses only digits 0 and 1. Each digit represents a power of 2. Example: 1010 = 10 in decimal
- Octal (Base 8): Uses digits 0-7. Each digit represents a power of 8. Example: 12 = 10 in decimal
- Decimal (Base 10): The standard system using digits 0-9. Example: 10 = 10 in decimal
- Hexadecimal (Base 16): Uses digits 0-9 and letters A-F. Each digit represents a power of 16. Example: A = 10 in decimal
How to Use This Converter
- Enter Your Number: Type the number you want to convert
- Select Input Base: Choose the base of your input number (binary, octal, decimal, or hexadecimal)
- Convert: Click the "Convert" button to see the number in all four bases
- Copy Results: Use the copy buttons to copy any result to your clipboard
Conversion Examples
Example 1: Converting Decimal 255
Binary: 11111111
Octal: 377
Decimal: 255
Hexadecimal: FF
Example 2: Converting Binary 1010
Binary: 1010
Octal: 12
Decimal: 10
Hexadecimal: A
Example 3: Converting Hex FF00
Binary: 1111111100000000
Octal: 177400
Decimal: 65280
Hexadecimal: FF00
Common Use Cases
- Programming: Convert color codes (hex to RGB), work with bit masks, and understand memory addresses
- Network Administration: Work with IP addresses, subnet masks, and port numbers
- Digital Electronics: Analyze circuit logic states and microcontroller registers
- Computer Science Education: Learn number system conversions and understand how computers represent data
- Data Analysis: Decode binary file formats and hex dumps
- Cryptography: Work with encoded values and hash functions
Quick Reference Guide
Hexadecimal Digit Values:
0=0, 1=1, 2=2, 3=3, 4=4, 5=5, 6=6, 7=7
8=8, 9=9, A=10, B=11, C=12, D=13, E=14, F=15
Common Powers of 2 (Binary):
2^0 = 1 2^8 = 256
2^1 = 2 2^10 = 1024 (1 KB)
2^2 = 4 2^16 = 65536
2^3 = 8 2^20 = 1048576 (1 MB)
2^4 = 16 2^32 = 4294967296
Related Tools
- Escape Sequence Converter - Convert between hex, Unicode, and other escape formats
- Hex to RGB Converter - Convert hexadecimal color codes to RGB
- Base64 Encoder - Encode/decode Base64 data
- ASCII Art Generator - Create ASCII art from text
- JSON Beautifier - Format and validate JSON data